DSP

Chapter-9: Filter Bank Design

Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/

Part-IV: Filter Banks & Subband Systems

Chapter-8

Filter Bank Preliminaries

- Filter Bank Set-Up
- Filter Bank Applications
- Ideal Filter Bank Operation
- Non-Ideal Filter Banks: Perfect Reconstruction Theory

Chapter-9 Filter Bank Design

- Non-Ideal Filter Banks: Perfect Reconstruction Theory (continued)
- · Filter Bank Design Problem Statement
- General Perfect Reconstruction Filter Bank Design
- DFT-Modulated Filter Banks

DSP 2016 / Chapter-9: Filter Bank Design

Filter Bank Design Problem Statement

Two design targets:

- ➡ Filter specifications, e.g. stopband attenuation, passband ripple, transition band, etc. (for each (analysis) filter!)
- **Perfect reconstruction** (PR) property.

Challenge will be in addressing two design targets at once (e.g. 'PR only' (without filter specs) is easy, see ex. Chapter-8)

PS: Can also do 'Near-Perfect Reconstruction Filter Bank Design', i.e. optimize filter specifications and at the same time minimize aliasing/distortion (=numerical optimization). Not covered here...

DSP 2016 / Chapter-9: Filter Bank Design

9/32

General PR-FB Design: Maximum Decimation (D=N)

$$R(z).E(z) = z^{-\delta}I_{N}$$

(= N-by-N matrices)

- Design Procedure:
 - 1. Design all analysis filters (see Part-II).
 - 2. This determines E(z) (=polyphase matrix).
 - 3. Assuming E(z) can be inverted (?), synthesis filters are

$$\mathbf{R}(z) = z^{-\delta} \cdot \mathbf{E}^{-1}(z)$$
 (delta to make synthesis causal, see ex. p.7)

- Will consider only <u>FIR</u> analysis filters, leading to simple polyphase decompositions (see Chapter-2)
- However, FIR E(z) then generally leads to <u>IIR</u> R(z), where stability is a concern...

DSP 2016 / Chapter-9: Filter Bank Design

General PR-FB Design: Maximum Decimation (D=N)

PS: Inversion of matrix transfer functions ?...

- The inverse of a scalar (i.e. 1-by-1 matrix) FIR transfer function is always IIR (except for contrived examples)

$$\mathbf{E}(z) = (2 - z^{-1}) \Rightarrow \mathbf{R}(z) = \mathbf{E}^{-1}(z) = \frac{1}{(2 - z^{-1})}$$

- ...but the inverse of an N-by-N (N>1) FIR transfer function <u>can</u> be FIR

$$\mathbf{E}(z) = \begin{bmatrix} z^{-2} + \frac{1}{2} & z^{-1} \\ 2z^{-1} & 2 \end{bmatrix} \Rightarrow \mathbf{R}(z) = \mathbf{E}^{-1}(z) = \begin{bmatrix} 2 & -z^{-1} \\ -2z^{-1} & z^{-2} + \frac{1}{2} \end{bmatrix}$$
$$\det(\mathbf{E}(z)) = 1$$

PS: Compare this to inversion of integers and integer matrices

$$\mathbf{E} = 2 \Rightarrow \mathbf{R} = \mathbf{E}^{-1} = \frac{1}{2}$$
 ... but ... $\mathbf{E} = \begin{bmatrix} 5 & 6 \\ 4 & 5 \end{bmatrix} \Rightarrow \mathbf{R} = \mathbf{E}^{-1} = \begin{bmatrix} 5 & -6 \\ -4 & 5 \end{bmatrix}$

DSP 2016 / Chapter-9: Filter Bank Design

General PR-FB Design: Maximum Decimation (D=N)

Question:

Can we build **FIR** E(z)'s (N-by-N) that have an **FIR** inverse?

Answer:

YES, `unimodular' E(z)'s, i.e. matrices with determinant=constant*zd

$$\mathbf{E}(z) = \mathbf{E}_{L} \cdot \begin{bmatrix} I_{N-1} & 0 \\ 0 & z^{-1} \end{bmatrix} \cdot \mathbf{E}_{L-1} \cdot \begin{bmatrix} I_{N-1} & 0 \\ 0 & z^{-1} \end{bmatrix} \cdot \cdot \mathbf{E}_{1} \cdot \begin{bmatrix} I_{N-1} & 0 \\ 0 & z^{-1} \end{bmatrix} \cdot \mathbf{E}_{0}$$

$$\mathbf{R}(z) = \mathbf{E}_{0}^{-1} \cdot \begin{bmatrix} z^{-1} \cdot I_{N-1} & 0 \\ 0 & 1 \end{bmatrix} \cdot \mathbf{E}_{1}^{-1} \cdot \cdot \cdot \begin{bmatrix} z^{-1} \cdot I_{N-1} & 0 \\ 0 & 1 \end{bmatrix} \cdot \mathbf{E}_{L-1}^{-1} \cdot \begin{bmatrix} z^{-1} \cdot I_{N-1} & 0 \\ 0 & 1 \end{bmatrix} \cdot \mathbf{E}_{L}^{-1}$$

$$\Rightarrow \mathbf{R}(z) \cdot \mathbf{E}(z) = z^{-L} \cdot I_{N}$$

where the Ei's are constant (= not a function of z) invertible matrices

Design Procedure:

Optimize Ei's to meet filter specs (ripple, etc.) for <u>all</u> analysis filters (at once)

DSP 2016 / Chapter-9: Filter Bank Design

= not-so-easy but DOABLE! 12 / 32

General PR-FB Design: Oversampled FBs (D<N)

- Design Procedure:
 - 1. Design all analysis filters (see Part-II).
 - 2. This determines E(z) (=polyphase matrix).
 - 3. Find R(z) such that PR condition is satisfied (how? read on...)

= easy if step-3 is doable...

- Will consider only <u>FIR</u> analysis filters, leading to simple polyphase decompositions (see Chapter-2)
- It will turn out that when D<N an <u>FIR</u> R(z) can always be found (except in contrived cases)...

DSP 2016 / Chapter-9: Filter Bank Design

13 / 32

General PR-FB Design: Oversampled FBs (D<N)

- Given E(z) how can R(z) be computed?
 - Assume every entry in E(z) is L_E-th order FIR (i.e. L_E +1 coefficients)
 - Assume every entry in R(z) is L_R -th order FIR (i.e. L_R +1 coefficients)
 - Hence number of unknown coefficients in R(z) is **D.N.(L_R+1)**
 - Every entry in R(z).E(z) is (L_E+L_R)-th order FIR (i.e. L_E+L_R+1 coefficients) (cfr. polynomial multiplication / linear convolution)
 - Hence PR condition is equivalent to D.D.(L_E+L_R+1) linear equations in the unknown coefficients (*)
 - Can be solved (except in contrived cases) if $D.N.(L_R+1) \ge D.D.(L_E+L_R+1)$

(*) Try to write down these equations! $L_R \ge \frac{D}{(N-D)} L_E - 1$

DSP 2016 / Chapter-9: Filter Bank Design

General PR-FB Design: Oversampled FBs (D<N)

- Given E(z) how can R(z) be computed?
 - (continued) ...
 - (continued) ...

 Can be solved (except in contrived cases) if $L_R \ge \frac{D}{(N-D)} L_E 1$
 - If D<N, then L_R can be made sufficiently large so that the (underdetermined) set of equations can be solved, i.e. an R(z) can be found (!).
 - Note that if D=N, then L_R in general has to be infinitely large, i.e. R(z) in general has to be IIR

DSP 2016 / Chapter-9: Filter Bank Design

15 / 32

DFT-Modulated FBs

- All design procedures so far involve monitoring of characteristics (passband ripple, stopband suppression,...) of <u>all</u> (analysis) filters, which may be tedious.
- Design complexity may be reduced through usage of `uniform' and `modulated ' filter banks.
 - DFT-modulated FBs (read on..)
 - Cosine-modulated FBs (not covered, but interesting design!)
- Will consider
 - Maximally decimated DFT-modulated FBs
 - Oversampled DFT-modulated FBs

DSP 2016 / Chapter-9: Filter Bank Design

Uniform versus non-uniform (analysis) filter bank:

• N-channel uniform FB: $H_n(z) = H_0(z \cdot e^{-j2\pi n/N})$ n = 0,...,N-1

i.e. frequency responses are <u>uniformly shifted</u> over the unit circle Ho(z)= `prototype' filter (=one and only filter that has to be designed) Time domain equivalent is: $h_n[k] = h_0[k] . e^{j2\pi k.n/N}$

Non-uniform = everything that is not uniform
 e.g. for speech & audio applications (cfr. human hearing)

DSP 2016 / Chapter-9: Filter Bank Design

17 / 32

H0(z)

Maximally Decimated DFT-Modulated FBs (D=N)

Uniform filter banks can be realized cheaply based on polyphase decompositions + DFT(FFT) (hence name `DFT-modulated FB)

1. Analysis FB

If
$$H_{0}(z), H_{1}(z), ..., H_{N-1}(z) \text{ with } H_{n}(z) = H_{0}(z.e^{-j2\pi n/N})$$

$$H_{0}(z) = \sum_{\bar{n}=0}^{N-1} z^{-\bar{n}} . E_{\bar{n}}(z^{N})$$
(N-fold polyphase decomposition)

then

$$H_{n}(z) = H_{0}(z.e^{-j2\pi n/N}) = \sum_{\bar{n}=0}^{N-1} z^{-\bar{n}}.e^{j2\pi n\bar{n}/N}.E_{\bar{n}}(z^{N} e^{-j2\pi nN/N})$$

$$= \sum_{\bar{n}=0}^{N-1} z^{-\bar{n}}.W^{-n\bar{n}}.E_{\bar{n}}(z^{N}), \quad \text{with} \quad W = e^{-j2\pi/N}$$

DSP 2016 / Chapter-9: Filter Bank Design

where F is NxN DFT-matrix

This means that filtering with the Hn's can be implemented by first filtering with the polyphase components and then applying an inverse DFT

PS: To simplify formulas the factor *N* in *N.F*⁻¹ will be left out from now on (i.e. absorbed in the polyphase components)

DSP 2016 / Chapter-9: Filter Bank Design

19 / 32

Maximally Decimated DFT-Modulated FBs (D=N)

Conclusion: economy in...

- Implementation complexity (for <u>FIR</u> filters):
 N filters for the price of 1, plus inverse DFT (=<u>FFT</u>)!
- Design complexity:
 - Design `prototype' Ho(z), then other $H_n(z)$'s are automatically `co-designed' (same passband ripple, etc...)!

DSP 2016 / Chapter-9: Filter Bank Design

- Design Procedure:
 - 1. Design prototype analysis filter Ho(z) (see Part-II).
 - 2. This determines $E_n(z)$ (=polyphase components).
 - 3. Assuming all E_n(z)'s can be inverted (?), choose synthesis filters

$$R_n(z) = z^{-\delta} . E_{N-1-n}^{-1}(z)$$

- Will consider only <u>FIR</u> prototype analysis filter, leading to simple polyphase decomposition (Chapter-2).
- However, FIR $E_n(z)$'s generally again lead to IIR $R_n(z)$'s, where stability is a concern...

DSP 2016 / Chapter-9: Filter Bank Design

27 / 32

Maximally Decimated DFT-Modulated FBs (D=N)

This does not leave much design freedom...

• FIR E(Z)? ..such that Rn(z) are also FIR

Only obtained when each $E_n(z)$ is 'unimodular', i.e. $E_n(z)$ =constant.z^d

Simple example is $E_n(z) = w_n \Rightarrow R_{N-1-n}(z) = w_n^{-1}$, where w_n 's are constants, which leads to `windowed' IDFT/DFT bank, a.k.a. `short-time Fourier transform' (see Chapter-14)

DSP 2016 / Chapter-9: Filter Bank Design

• Bad news: Not much design freedom for maximally decimated DFT-modulated FB's...

- Good news: More design freedom with...
 - Cosine-modulated FB's
 - Oversampled DFT-modulated FB's

DSP 2016 / Chapter-9: Filter Bank Design

29 / 32

Cosine Modulated FBs

- Procedure:
 - Po(z) = prototype lowpass filter, cutoff at $\frac{\pm \pi/2N}{1}$ for N filters Then...

PS: Real-valued filter coefficients here!

- Details: See literature...
- Maximally decimated & oversampled FB designs
- Design software available (e.g.Matlab)

DSP 2016 / Chapter-9: Filter Bank Design

Oversampled DFT-Modulated FBs (D<N)

· In maximally decimated DFT-modulated FB, we had

$$\mathbf{E}(z) = \mathbf{F}^{-1}.diag[E_n(z)] \quad \mathbf{R}(z) = diag[R_{N-1-n}(z)].\mathbf{F} \quad \text{(N-by-N matrices)}$$

· In oversampled DFT-modulated FB, will have

$$\underbrace{\mathbf{E}(z)}^{\text{N-by-D}} = \underbrace{\mathbf{F}^{-1}}^{\text{N-by-N}} \cdot \underbrace{\mathbf{B}(z)}^{\text{N-by-D}} = \underbrace{\mathbf{R}(z)}^{\text{D-by-N}} = \underbrace{\mathbf{C}(z)}^{\text{D-by-N}} \cdot \underbrace{\mathbf{F}}^{\text{N-by-N}}$$

with B(z) (tall-thin) and C(z) (short-fat) structured/sparse matrices constructed with poyphase components of prototype filters

DSP 2016 / Chapter-9: Filter Bank Design

31 / 32

Oversampled DFT-Modulated FBs (D<N)

- · Details: see literature
- Design Examples: http://homes.esat.kuleuven.be/~dspuser/DSP-CIS/2016-2017/material.htm
- Design software available (e.g.Matlab)

DSP 2016 / Chapter-9: Filter Bank Design