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Filter Bank Set-Up

So this is the picture to keep in mind...

analysis bank
(analysis & anti-aliasing)

downsampling/decimation

upsampling/expansion .
synthesis bank
(synthesis & interpolation)

Perfect Reconstruction Theory (continued)

A simpler analysis results from a polyphase description :

n-th row of E(z) has N-fold (=p-fold)
polyphase components of Hn(z)

H,(2) Eo\o(ZN)

Hy_(2) EN—I\O (ZN) EN—I\N—I (ZN)

n-th column of R(z) has N-fold

N
Rz ) polyphase components of Fn(z)

RO\O(ZN) RN71|0(ZN)

T

Fy(2)

Fy.(2) Rouv-l(ZN) RN—1|N—1(ZN)

Do not continue until you understand how formulae correspond to block scheme!




Perfect Reconstruction Theory

« With the "noble identities’, this is equivalent to:

Necessary & sufficient conditions for
i) alias cancellation
ii) perfect reconstruction

are then derived, based on the product FYESN e
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Perfect Reconstruction Theory

D=N=4

— P |
-1 Cp)_ Ulk-3]
Iz’zl 14

Necessary & sufficient condition for PR is then (proof omitted). ..
z°F

N-—r
-o-1
z %7, 0

R(2).E(z2) = [

In is nxn identity matrix, r is arbitrary

Example (r=0) : for conciseness, will
use this from now on !

Beautifully simple!!




Perfect Reconstruction Theory

A similar PR condition can be derived for oversampled FBs

The polyphase description (compare to p.34) is then...

- — n-th row of E(z) has D-fold
o@D B l : polyphase components of Hn(z)
z

Byg(@) wo  Brapa@)
’ R(z") ‘ n-th column of R(z) has D-fold
0D Ry(z”) o Ry (@) polyphase components of Fn(z)

1 ROID—](ZD) RN-UD-l(ZD)

Note that E is an N-by-D (‘tall-thin’) matrix, R is a D-by-N (‘short-fat’) matrix !

Perfect Reconstruction Theory

Simplified (cfr. r=0 on p.6) condition for PR is then...

R(z).E(z)=z" ]£D

/1

In the D=N case (p.6), the PR condition has a product of square matrices. PR-FB
design will then involve matrix inversion, which is mostly problematic.

In the D<N case, the PR condition has a product of a ‘short-fat’ matrix and a ‘tall-
thin’ matrix. This will lead to additional PR-FB design flexibility.

Again beautifully simple!!




Filter Bank Design Problem Statement

Two design targets :

@ Filter specifications, e.g. stopband attenuation,
passband ripple, transition band, etc.
(for each (analysis) filter!)
@ Perfect reconstruction (PR) property.
Challenge will be in addressing two design targets at once

(e.g. ‘PR only’ (without filter specs) is easy, see ex. Chapter-8)

PS: Can also do ‘Near-Perfect Reconstruction Filter Bank Design’, i.e.
optimize filter specifications and at the same time minimize aliasing/
distortion (=numerical optimization). Not covered here...
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General PR-FB Design: Maximum Decimation (p=n)

(= N-by-N matrices)

» Design Procedure:

1. Design all analysis filters (see Part-Il).
2. This determines E(z) (=polyphase matrix).
3. Assuming E(z) can be inverted (?), synthesis filters are

-6 -1
R(Z) =Zz E (Z) (delta to make synthesis causal, see ex. p.7)

Will consider only FIR analysis filters, leading to simple polyphase
decompositions (see Chapter-2)

However, FIR E(z) then generally leads to IR R(z), where'
concern...
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General PR-FB Design: Maximum Decimation (p=n)

PS: Inversion of matrix transfer functions ?...
— The inverse of a scalar (i.e. 1-by-1 matrix) FIR transfer function is
always IIR (except for contrived examples)
1
(2-z7")
— ...but the inverse of an N-by-N (N>1) FIR transfer function can be FIR

E(z)=(2- z'l) =R(2) = E'l(z) =
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General PR-FB Design: Maximum Decimation (p=n)

Question:

Can we build E E(Z)’S (N-by-N)

that have an FIR inverse? FIR unimodular E(z)’s
Answer:

YES, ‘unimodular’ E(z)'s, i.e. matrices with determinant=constant*zd

: E(z)=EL.[ I }.EL_I.[ Iy ]El[
0 0

1 -1
R(z)=E;'.[ Sl O g |E
0 1 0

= R().E(x)=z".1,

where the EI’ s are constant (= not a function of z) invertible matrices

Design Procedure:

Optimize Er’ s to meet filter specs (ripple, etc.) for all analysis filters (at once)
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General PR-FB Design: Oversampled FBs (p<n)

IR(z).E(z) =z°T J

» Design Procedure:

1. Design all analysis filters (see Part-Il).
2. This determines E(z) (=polyphase matrix).
3. Find R(z) such that PR condition is satisfied (how? read on...)

= easy if step-3 is doable...

» Wil consider only FIR analysis filters, leading to simple polyphase
decompositions (see Chapter-2)

* It will turn out that when D<N an FIR R(z) can always be found (except
in contrived cases)...
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General PR-FB Design: Oversampled FBs (p<n)

IR(z).E(z) =77 J

* Given E(z) how can R(z) be computed?

Assume every entry in E(z) is Lg-th order FIR (i.e. Lg +1 coefficients)
Assume every entry in R(z) is Lg-th order FIR (i.e. Lg +1 coefficients)
Hence number of unknown coefficients in R(z) is D.N.(Lg +1)

Every entry in R(z).E(z) is (LgtLg)-th order FIR (i.e. Lg+Lg+1
coefficients) (cfr. polynomial multiplication / linear convolution)

Hence PR condition is equivalent to D.D.(Lg+Lg+1) linear equations
in the unknown coefficients (*)

Can be solved (except in contrived cases) if
> p

D.N.(Ly+1)= D.D(L, + Ly +1)

(*) Try to write down these equations!
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General PR-FB Design: Oversampled FBs (p<n)

IR(z).E(z) =z J

* Given E(z) how can R(z) be computed?

— (continued) ...

— Can be solved (except in contrived cases) if

DN.(L,+1)=D.D(L,+L,+1)

— If D<N, then L can be made sufficiently large so that the
(underdetermined) set of equations can be solved, i.e. an R(z) can
be found (!).

— Note that if D=N, then Ly in general has to be infinitely large, i.e. R(z)
in general has to be IIR
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DFT-Modulated FBs

- All design procedures so far involve monitoring of
characteristics (passband ripple, stopband suppression,...)
of all (analysis) filters, which may be tedious.

- Design complexity may be reduced through usage of

“uniform’ and “modulated ‘ filter banks.
* DFT-modulated FBs (read on..)
» Cosine-modulated FBs (not covered, but interesting design!)

- Will consider
- Maximally decimated DFT-modulated FBs
- Oversampled DFT-modulated FBs
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Maximally Decimated DFT-Modulated FBs (p=n)

Uniform versus non-uniform (analysis) filter bank:

N=4
uniform HO H1 H2 H3

non-uniform HOAHX% H3

i.e. frequency responses are uniformly shifted over the unit circle
Ho(z)= "prototype’ filter (=one and only filter that has to be designed)

Time domain equivalent is: h,[k]= h,[k].e’?™ "N

» Non-uniform = everything that is not uniform
e.g. for speech & audio applications (cfr. human hearing)
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Maximally Decimated DFT-Modulated FBs (p=n)

Uniform filter banks can be realized cheaply based on
olhase decomositions + DFT(FFT) (hence name 'DFT-modulated FB)

N=4

1. Analysis FB ulk]

i H,(2),H,(2),...H, (z) with H, (z)=H,(z.e>™")

N-1
-7 N
Hy(2)= ) 2" E; (")
7i=0 (N-fold polyphase decomposition)

N-1 )

. _ . _ f_/%
H,(2)= Hy(z.e V)= 3 227N | (N g 27Ny
with W =e /2N
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Maximally Decimated DFT-Modulated FBs (p=n)

NF'

we we we
H,(2) whooowE LW
H,(2) |U(z)= wEoowt L W

H, (z) WD R e

W = g 27N

where F is NxN DFT-matrix

This means that filtering with the Hn’ s can be implemented by first filtering
with the polyphase components and then applying an inverse DFT

PS: To simplify formulas the factor Nin N.F? will be left out from now on
(i.e. absorbed in the polyphase components)
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Maximally Decimated DFT-Modulated FBs (p=n)

Conclusion: economy in...
— Implementation complexity (for EIR filters):
N filters for the price of 1, plus inverse DFT (=EFT)!
— Design complexity:
Design “prototype’ Ho(z), then other Hn(z) s are
automatically ‘co-designed’ (same passband ripple, etc...) !
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Maximally Decimated DFT-Modulated FBs (p=n)

» Special case: DFT-filter bank, if all En(z)=1
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Maximally Decimated DFT-Modulated FBs (p=n)

* DFT-modulated analysis FB + maximal decimation

= efficient realization !
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Maximally Decimated DFT-Modulated FBs (p=n)

2. Synthesis FB

phase shift added
for convenience

Fy(2).F(2),...F, (z) with F(z) " (z.e 2N

N-1
Fy(z)= Ez'ﬁ.Rﬁ(zN) = Y TWINTTR ()
=0

n=0
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Maximally Decimated DFT-Modulated FBs (p=n)

Similarly simple derivation then leads to...
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Maximally Decimated DFT-Modulated FBs (p=n)

» Expansion + DFT-modulated synthesis FB :

= efficient realization !

"yIK]
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Maximally Decimated DFT-Modulated FBs (p=n)

How to achieve Perfect Reconstruction (PR)
with maximally decimated DFT-modulated FBs?

R(2)E(z) = z"’]N — E(z)=F 'diag[E,(z)] = R(2)= Z°El(2)= z“s.diag[E;l(z)].F

e N R (2)=7".Ey,_ . (2)

N-1-n

Polyphase components of synthesis bank prototype filter are obtained
by inverting polyphase components of analysis bank prototype filter
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Maximally Decimated DFT-Modulated FBs (p=n)

.
(14—
yIK]

» Design Procedure:
1. Design prototype analysis filter Ho(z) (see Part-Il).

2. This determines En(z) (=polyphase components).
3. Assuming all En(z)’s can be inverted (?), choose synthesis filters

R, (2)=2".E;, ,(2)

» Will consider only FIR prototype analysis filter, leading to simple

polyphase decomposition (Chapter-2). @
» However, FIR En(z)" s generally again lead to IR Rn(z)’ s, where
is a concern... N4
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Maximally Decimated DFT-Modulated FBs (p=n)

This does not leave much design freedom...
* FIR E(Z)? .such that Rn(z) are also FIR

Only obtained when each E, (z) is ‘unimodular’, i.e. E (z)=constant.z®

Simple example is [[AGENEIIMCES" \where Wi's

are constants, which leads to “windowed’ IDFT/DFT bank,
a.k.a. “short-time Fourier transform’ (see Chapter-14)

all E(z)'s

FIR E(z)'s
FIR unimodular E(z)’s

E(z)=F-'.diag{..}
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Maximally Decimated DFT-Modulated FBs (p=n)

* Bad news: Not much design freedom for maximally
decimated DFT-modulated FB'’s...

* Good news: More design freedom with... :

— Cosine-modulated FB’ s

— Oversampled DFT-modulated FB’ s
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Cosine Modulated FBs

* Procedure:

Po(z) = prototype lowpass filter, cutoff at for N filters
Then... Po

7(0.5)

—j(0.5% . J(+0.5%
H,(z) =,.F(z.e M+, B(z.e N

(140 j(1+0.5) %

—j(1+0.5)7 =
H(z)=c.P(ze " Vyral P(ze V)

etc..

PS: Real-valued filter coefficients here!
» Details: See literature...
+ Maximally decimated & oversampled FB designs
» Design software available (e.g.Matlab)
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Oversampled DFT-Modulated FBs (p<n)

* |In maximally decimated DFT-modulated FB, we had
E(z)= F‘l-diag[E,, (Z)] R(2)= diag[RN—l—n (Z)]-F (N-by-N matrices)

* In oversampled DFT-modulated FB, will have
N-by-D  N-by-N' N.py-D D-by-N D-by-N N-by-N
—— —— S

E@)=F' BoBRD=C& F

with B(z) ai-thiny@and C(z)  short-fat) Structured/sparse matrices
constructed with poyphase components of prototype filters
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Oversampled DFT-Modulated FBs (p<n)

Details: see literature

Design Examples:
http://homes.esat.kuleuven.be/~dspuser/DSP-CI1S/2016-2017/material.html

Design software available (e.g.Matlab)
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